AI can categorize lung nodules' cancer risk, study suggests

A new artificial intelligence algorithm can accurately assess the risk of cancer associated with indeterminate pulmonary nodules in patients' lungs, according to a study published in American Journal of Respiratory and Critical Care Medicine.

Traditionally, physicians use CT scans to assess lung nodules, which can lead to earlier cancer diagnoses. However, this approach can also lead to overtreatment if nodules are benign.

Researchers developed the algorithm to assess cancer risk based on data on 15,693 lung nodules from the National Lung Screening Trial, Nashville, Tenn.-based Vanderbilt University Medical Center and Oxford University Hospitals.

Researchers found the algorithm was linked to a higher accuracy of predicted cancer risks. The algorithm accurately reclassified IPNs into low or high-risk categories in more than a third of cancerous and benign cases when compared to existing risk assessments.

"These results suggest the potential clinical utility of this deep learning algorithm to revise the probability of cancer among IPNs aiming to decrease invasive procedures and shorten time to diagnosis," lead author Pierre Massion, MD, Cornelius Vanderbilt Chair in Medicine at Vanderbilt University, told the VUMC Reporter.

Read the study here.

 

COVID-19 CoverageE-NewslettersConferencesVirtual ConferencesWebinarsWhitepapersPodcastsPrint IssueMultimediaListsAbout UsArtificial IntelligenceConsumerismCybersecurityData AnalyticsDigital MarketingDigital TransformationEHRs / InteroperabilityAI spots potential COVID-19 treatment drug within two days

Copyright © 2024 Becker's Healthcare. All Rights Reserved. Privacy Policy. Cookie Policy. Linking and Reprinting Policy.

 

Featured Whitepapers

Featured Webinars